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Abstract
We are reporting a new non-Fermi-liquid-type normal phase that has a well
defined Fermi energy, but without showing any non-regularity in the momentum
distribution function nk in the whole momentum space, the sharp Fermi
momentum concept being undefinable. The system contains a natural built-
in gap that is visible in the physical properties of the system at nonzero
temperatures. The presence of a flat band in multi-band interacting Fermi
systems with more than half filling is the key feature leading to such a ground
state, which is not restricted to one spatial dimension and emerges in the
proximity of an insulating phase.

PACS numbers: 05.30.Fk, 67.40.Db, 71.10.-w, 71.10.Hf, 71.10.Pm

Our understanding of the behaviour of interacting fermionic many-body systems is intimately
connected to the concept of a Fermi liquid introduced by Landau many decades ago [1].
In a normal state that preserves all symmetry properties of the high-temperature phase of
a fermionic system, the Fermi liquid behaviour has been clearly observed in the normal
state of He-3 and simple metals [2]. It has the meaning that, in spite of the inter-particle
interactions, the low-energy behaviour of the system can be well described within a picture of
weakly interacting quasi-particles [3]. This picture can also be mathematically formulated [4].
In these terms, in a normal Fermi liquid, the following hold. (a) There is a one-to-one
correspondence between the non-interacting one-particle states and interacting single-particle
states. This is concretely obtained by describing the interacting system using a perturbation
theory that is convergent up to infinite order. (b) The single-particle Green functions have a
quasi-particle pole that gives rise to a discontinuity of the momentum distribution function
nk at the Fermi surface whose position is specified by a sharp Fermi momentum value �kF.
(c) The residual quasi-particle interactions can be described by a small number of parameters,
called Landau parameters, which can be deduced from a microscopic theory taking into
account non-divergent two-particle vertex functions [5]. In the last decade, however, non-
Fermi-liquid behaviour has been observed experimentally in the normal phase of a variety
of materials, including higher-than-one-dimensional systems of great interest. Examples are
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high-temperature superconductors [6], heavy fermions [7], layered systems [8], quasi-one-
dimensional conductors, doped semiconductors, systems with impurities, materials presenting
proximity to the metal–insulator transition [3] etc. These results are often discussed in terms
of multi-band models [9], the presence of some kind of gap in the normal phase being clearly
established in many cases and the subject of intensive studies [9,10]. The last decade witnessed
a huge intellectual effort [11] for the understanding of the non-Fermi-liquid behaviour in the
normal phase [12] of fermionic systems. On the theoretical side however, for pure systems,
the existence of a non-Fermi liquid in a normal phase has been exactly proved only for the
one-dimensional case (i.e. Luttinger liquid [13]). So far, the possibility of extending the proof
to two spatial dimensions has not been demonstrated rigorously. In fact, a rigorous theory
of a non-Fermi-liquid normal state in more than one spatial dimension is missing. For this
reason, the theoretical understanding of different phenomena observed in the materials listed
above is relatively poor and theoretical advance in this subject is badly needed. Our work
on the periodic Anderson model (PAM) at nonzero and finite on-site Coulomb repulsion (U )
(a prototype of two-band systems containing strong correlation effects) was motivated by
this state of affairs. We present in this Letter, for the first time, an exact solution for this
model. The solution present in a restricted (but continuous and infinite) domain of the phase
diagram represents a new type of non-Fermi-liquid behaviour in a normal phase for a system
that has a built-in gap. The obtained ground-state energy cannot be expressed as a sum of
contributions of the on-site Hamiltonian terms, and the ground-state expectation value of the
kinetic energy terms is nonzero and negative1. The state emerges in the vicinity of a Mott
insulating phase in a continuous domain of concentration above three-quarters filling and has
a well defined Fermi energy, but the Fermi momentum cannot be defined, nk being without
any non-regularity in momentum space. The property is due to the emergence of a flat band
in a multi-band system with more than half filling and can be extended in an exact manner to
two spatial dimensions [14]. Such features have been observed experimentally, for example
in ARPES data, which, even for high-Tc materials, often reflect main bands without any sharp
characteristics in nk [15] or necessitate the assumption of the presence of flat bands [16]. Band
structure calculations for layered systems often show a Fermi level positioned exactly at the
bottom of a conduction band with a relatively large effective mass around its minimum, below
which a gap is present [8]. Connections between the emergence of superconductivity and flat
dispersions were also clearly pointed out in [17]. Flat-band features are present in heavy-
fermion systems as well [18], and can even be produced by squashing carbon nanotubes [19].

We consider two bands denoted by b = c, f , the starting 1D Hamiltonian being
Ĥ = Ĥ0 + Û . The Hubbard term is Û = U

∑
i n̂

f
i,↑ n̂

f
i,↓ and we have Ĥ0 = T̂c + T̂f + Êf + Ĥh

with the kinetic energies T̂b = tb
∑
i,σ

[
b

†
i,σ bi+1,σ + h.c.

]
, the on-site f level energy

Êf = Ef
∑
i,σ n̂

f
i,σ , hybridization energy Ĥh = V̂0 + V̂1 and

V̂0 =
∑
i,σ

[
Ṽ0 c

†
i,σ fi,σ + h.c.

]

V̂1 =
∑
i,σ

[
Ṽ1

(
c

†
i,σ fi+1,σ + f †

i,σ ci+1,σ
)

+ h.c.
]
.

(1)

We present the case when Ĥh contains imaginary coupling constants, i.e. Ṽ0 = iV0 and
Ṽ1 = iV1, where V0, V1 are real. For the starting point we consider three-quarters filling. In
this Letter we shall give an exact solution of this problem, valid in a restricted domain of the
phase diagram relevant for our study. In order to have a clear image of the solution and its
physical meaning, let us consider the U = 0 case first. To this end, we would like to express

1 As a consequence, the system is not insulating.
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Ĥ0 through a B̂ = ∑
i,σ B

†
i,σ Bi,σ term, where Bi,σ = α ci,σ + β ci+1,σ + γ fi,σ + δ fi+1,σ

and α, β, γ, δ are constants to be determined. Introducing the total particle number operator
N̂ = ∑

i,σ,b n̂
b
i,σ , we find then that Ĥ0 = − B̂ + η N̂ holds, if the following relations are

satisfied:

η = |α|2 + |β|2 (2)

Ef = η − (|γ |2 + |δ|2) (3)

− tc = α∗ β = β∗ α (4)

− tf = γ ∗ δ = δ∗ γ (5)

iV0 = α γ ∗ + δ∗ β = − (α∗ γ + δ β∗) (6)

iV1 = α δ∗ = γ β∗ = −α∗ δ = − γ ∗ β. (7)

Equations (4)–(7) determine through α, β, γ, δ the value of Ef and η for which the presented
structure of Ĥ0 is valid. With η = 2

√
v̄2 + t2c , v̄ = V0 V1/( 2 tf) we obtain

Ef = η (1 − t2f V
−2

1 ) V 2
1 = − tc tf . (8)

Taking now into consideration that B†
i,σ Bi,σ + Bi,σ B

†
i,σ = |α|2 + |β|2 + |γ |2 + |δ|2 and

imposing the condition 〈N̂〉 = 3L where L represents the number of lattice sites (three-
quarters filling), we find Ĥ0 = Eg + P̂ , where Eg = Lη

(
1 − 2 |m|2) and m = tf/Ṽ1

has been introduced. The operator P̂ = ∑
i,σ Bi,σ B

†
i,σ being positive semidefinite, Eg is

the ground-state energy, and the ground-state wavefunction is that |ψg〉 for which we have
P̂ |ψg〉 = 0. We demonstrate now that

|ψg〉 =
L∏
i=1

( 3∏
α=1

F
(α)
i

)
|0〉 (9)

where |0〉 is the bare vacuum with no fermions present,Di,σ = α∗ (
c

†
i,σ +mf †

i,σ

)
+ β∗ (

c
†
i+1,σ +

m∗ f †
i+1,σ

)
and F (α=1,2)

i = Di,σ(α)=↑,↓. In order to see this, one can easily verify that

B
†
j,σ F

(α)
i = −F (α)i B

†
j,σ independent of the indices, and B†

i,σ Di,σ = 0, so P̂ |ψg〉 = 0,
and |ψg〉 is the ground state. We must stress that for U = 0 the ground state is entirely given
by F (1)i and F (2)i , the F (3)i operator being completely arbitrary apart from the requirement that
it introduces under the

∏
i product L electrons into the system. The concrete expression of

F
(3)
i is fixed by the nonzero U as follows. When U 
= 0, the Hamiltonian contains, besides
Ĥ0, the Hubbard Û as well. However, one may observe that Û can be exactly transformed as
Û = U P̂ ′ + U

∑
i,σ n̂

f
i,σ − U Lwhere P̂ ′ = ∑

i P̂
′
i and P̂ ′

i = (1 − n̂f
i,↑ − n̂f

i,↓ + n̂f
i,↑ n̂

f
i,↓).

However, P̂ ′
i is unity if on the i site there are no f electrons, and is zero if on site i there is

at least one f electron. As a consequence, P̂ ′ gives a sum of non-negative numbers, so it is a
positive semidefinite operator. Furthermore, P̂ ′ gives its minimum eigenvalue (i.e. zero) for a
wavefunction that contains at least one f electron on every site of the lattice. Let us consider
for this reason

F
(3)
i =

∑
σ

aσ f
†
i,σ (10)

where the aσ are constants to be determined. Now |ψg〉 introduces three electrons L times
within the system, so the solution (two bands are present) is indeed for three-quarters filling.
Because of equation (10) the three electrons per lattice site are distributed in the ground state in
such a way that on every site we have always at least one f electron present. As a consequence,
Ĥ = Ĥ0 + Û = [Ĥ0 + U

∑
i,σ n̂

f
i,σ − U L] + U P̂ ′ has the ground-state wavefunction given
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by equations (9), (10), provided the energy of the f level in Ĥ0 is renormalized asE′
f = Ef + U

and Eg is shifted down with U L. We underline that in the U → 0 limit the described |ψg〉
becomes only a small contribution from the linear combination of wavefunctions that build up
the ground state. The physical properties of the interacting ground state are present only at
U > 0, and the U 
= 0 state cannot be perturbatively obtained from the U = 0 case. This
confirms the general belief that a non-Fermi-liquid emergence has to be a clear non-perturbative
effect [20].

ForU > 0, instead of Ĥ0 we have Ĥ = − B̂ + η N̂ − U L + U P̂ ′ and equations (2)–(7)
all remain valid, excepting equation (3), which becomes E′

f = Ef + U = |α|2 + |β|2 −
|γ |2 − |δ|2. Because equations (4)–(7) remain the same, the α, β, γ, δ, η, m values remain
unaltered (together with e1, e2 in equation (12) below); we obtain Ĥ ′

0 = EUg + P̂+, where

EUg = Lη
(
1 − 2 |m|2) − U L. The term P̂+ = P̂ + U P̂ ′ is a positive semidefinite

operator, whose minimum eigenvalue is given by |ψg〉 since P̂+ |ψg〉 = 0. The conditions that
enable the construction of the solution for Ĥ change from equation (8) to

E′
f = Ef + U = η (1 − |m|2) (11)

η and V 2
1 remaining as given in equation (8) and U > 0. We denote the manifold defined by

equation (11) by2 Dp.
In fact |ψg〉 can be written in k space as well. Fourier transforming and taking

e1 = α∗ + β∗ exp (ik), e2 = α∗m + β∗m∗ exp (ik), F (α)i = ∑
k eikri F

(α)
k , Dk,σ =

e1 c
†
k,σ + e2 f

†
k,σ , F (3)k = ∑

σ aσ f
†
k,σ , with F (α)k F

(α)
k = 0, F (α)k F

(α′)
k′ = −F (α′)

k′ F
(α)
k

and M = ∑
P (−1)p exp[i ( r1 ki1 + r2 ki2 + · · · + rL kiL)] where

∑
P denotes a sum over

all permutations of (1, 2, . . . , L) to (i1, i2, . . . , iL) and p represents the number of pair
permutations in a given P , we find |ψg〉 = M3 ∏

k

( ∏3
α=1 F

(α)
k

) |0〉. With A = M3 we
finally obtain |ψg〉 = A

∏
k dk |0〉, where

dk = e2
1 c

†
k,↑ c

†
k,↓ F

(3)
k + e1 e2 f

†
k,↓ f

†
k,↑

∑
σ

aσ c
†
k,σ (12)

and 〈ψg|ψg〉 = |A|2 ∏
k |e3|2

[|e1|4 + |e1|2 |e2|2
]
. The e3 constant coefficient is chosen to

preserve the normalization to unity3 and |e3|2 = ∑
σ |aσ |2.

To obtain an insight into the physical behaviour of the system in the ground state, let
us first diagonalize Ĥ0 in momentum space. Denoting H h

k = (Vk c
†
k,σ fk,σ + h.c.), in the

thermodynamic limit we find

Ĥ0

L
=

∑
σ

∫ 2π

0

dk

2π

[ ∑
b=c,f

εb
k b

†
k,σ bk,σ + H h

k

]
(13)

where εc
k = 2 tc cos k, εf

k = Ef + 2 tf cos k, Vk = 2V1 sin k + iV0. Introducing the row
vector W †

k = (c
†
k,σ , f

†
k,σ ) and the (2 × 2) matrix R̃ with components R(1,1) = εc

k, R(1,2) =
Vk, R(2,1) = V ∗

k , R(2,2) = εf
k , we may write the integrand in equation (13) asW †

k R̃ Wk . The
diagonalization in k space reduces to the secular equation written for R̃. Two bands arise, that
via equation (8) become

E
(1)
k = 2

√
v̄2 + t2c > 0

E
(2)
k = 2

tf

tc

√
v̄2 + t2c + 2 (tf + tc) cos k

(14)

2 Dp is continuous, infinite and crosses the parameter space from the low-U up to U → ∞.
3 In the text we considered a = a↑ a constant. However, in equation (10) the aσ can even be local. Using
the notation |ψg(a)〉 for equation (12), considering {ak} arbitrary k-dependent sets, the complete ground state is
|ψ〉 = ∑

{ak } α({ak})|ψg({ak})〉 with 〈ψ |ψ〉 = 1. This reproduces equation (16), EUg , nk = 3 and main properties
reported.
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where we have as presented in equation (8), sign(tf) = −sign(tc). The system is at three-
quarters filling, so the lower band E(2)k is completely filled, and the upper band E(1)k , which is
completely flat, is half filled. There is no hybridization between these two bands and, taking
into account their filling, the ground state energyEg is re-obtained. In the presence ofU > 0,
in the ground state, because P̂ ′ |ψg〉 = 0, the effective Hamiltonian is in fact Ĥ ′

0/L, which
differs from Ĥ0/L in that it has a renormalized E′

f = Ef + U , and its energy scale is shifted
down withU . Effectuating the calculations for the band structure as presented for equation (14)
but using instead of Ef the E′

f value, we re-obtain (shifted down with U ) for the ground state
the structure presented in equation (14). So we have a well defined Fermi energy, positioned
atE(1)k = constant, the Fermi momentum being undefinable. The system has a natural built-in
gap (the minimum and nonzero distance between the E(1) and E(2)) that will be visible in the
physical properties at4 T 
= 0.

To understand the physical behaviour of the system all ground state expectation values
at U > 0 relevant for our study can be expressed from equation (12). Introducing
Z−1
k = (|e1|4 + |e1|2 |e2|2) |e3|2, we have

〈f †
k,σ fk,σ 〉 = [|aσ |2 |e1|4 + |e3|2 |e2|2 |e1|2

]
Zk

〈c†
k,σ ck,σ 〉 = [|aσ |2 |e1|2 |e2|2 + |e3|2 |e1|4

]
Zk

〈c†
k,σ fk,σ 〉 = [|a−σ |2 |e1|2 e∗1 e2

]
Zk.

(15)

It is seen that nk = ∑
σ

(〈c†
k,σ ck,σ 〉 + 〈f †

k,σ fk,σ 〉
) = 3 i.e. the total momentum distribution

function is uniform in k space, so the system is a non-Fermi liquid. From equation (15) all
individual contributions in nk can be expressed. We obtain functions of k that are continuous
together with their derivatives of any order in the whole momentum space. For example,
nc
k,↑ = 〈c†

k,↑ ck,↑〉 = 1 − A (η + 2 tc cos k)(η̄ + 2 tc cos k)−1, where the constants are
A = |a↓|2 |m|2/[|e3|2 (|m|2 − 1)] and η̄ = η (|m|2 + 1)/(|m|2 − 1) > 2tc. The
movement of particles is allowed by |ψg〉, that requires ‘at least one f electron on every
site’, i.e. allows nonzero hopping matrix elements. Indeed, starting from equation (15)
the ground-state expectation values of all contributions to Ĥ can be expressed. With
I/L = ∫ 2π

0 dk [2π (|e1|2 + |e2|2)]−1 > 0, we find

〈T̂c〉
A1

= 2 η |m|2 〈T̂f〉
A1

= 2 η |m|4 〈Êf〉
A2

= Ef

〈Û〉 = U (A2 − L) 〈V̂0〉 = − 2V 2
0 I

〈V̂1〉 = − 2 η |m|2 (1 + |m|2) L
(1 − |m|2)2 + A3

(16)

whereA1 = [L− η (1 + |m|2) I ]/(1 − |m|2)2,A2 = [(1 − 2 |m|2) L + 2 η |m|2 I ]/(1 − |m|2)
and A3 = {2 η2 [(1 + |m|2)/(1 − |m|2)]2 − 8V 2

1 } I . Summing up all contributions
in equation (16) we re-obtain exactly the ground-state energy EUg . We observe from
equation (16) that EUg cannot be expressed as a sum of on-site contributions. With |m̄|2 =
|m|2 (1 + |m|2)/(1 − |m|2)2, J = η (1 + |m|2) I − L, 〈Ĥloc〉 = 〈Êf〉 + 〈 Û 〉 + 〈V̂0〉, we
have

〈Êf〉 + 〈Û〉 + 〈Ĥh〉 = EUg + 2 η |m̄|2 J > EUg

〈Ĥloc〉 = EUg + 8V 2
1 I > EUg .

(17)

Here J = L [1 − r−2]−1/2 − L > 0 and r = (η/2 tc) [(|m|2 + 1)/(|m|2 − 1)]. From
equation (17) it can be seen that the system is not localized because 〈Ĥloc〉 > EUg , i.e. the sum

4 Energy is absorbed by the lower band during excitations.
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of the ground-state expectation values of all on-site (localized) terms from the Hamiltonian
is greater than the ground-state energy itself. On the other hand, from equation (16)∑

b=c,f 〈T̂b〉 = − 2 η |m̄|2 J < 0. Furthermore, as can be seen from equations (16) and (17)

adding the non-local part of the hybridization to the kinetic energy contributions 〈T̂c〉+ 〈T̂f〉 we
obtain also a negative number5 〈Ĥmov〉 = 〈T̂c〉 + 〈T̂f〉 + 〈V̂1〉 < 0. So taken together, the sum of
all ground-state expectation values connected to the movement of particles within the system
is negative. As a consequence, similar to the 2D case with flat upper band and imaginary m
parameter [14], in the situation described here, the system is maintaining its itinerant character
instead of becoming insulating, because the 〈Ĥmov〉 (i.e. the movement of particles within the
system) decreases the total energy. As a consequence, the system is in a normal phase, but
without having any non-regularity in nk at any point in k space (even in its derivatives with
respect to k). From equation (10), the coefficient a↑ remains undetermined and the ground
state has a large spin degeneracy, so it is paramagnetic (see also footnote 3).

From the point of view of the described properties is important to analyse the system
also around Dp. Concerning these aspects, first of all it can be seen that the presented
state emerges also in the presence of doping. Taking N = 3L + nr , where 1 � nr < L

represents the additional electrons introduced into the system above three-quarters filling, we
define F̂ (4) = ∑

{k}A{k}
∏nr
k f

(4)
k with f (4)k = ε↑(f +

k,↑ + eiφcc+
k,↑) + ε↓eiφ↓(f +

k,↓ + eiφcc+
k,↓),

where A{k} represents the coefficient of a given {k} combination of nr different and ordered
ki taken from the L possible k-values. The ground-state wavefunction becomes under doping
|ψgd〉 = ∏

i (
∏3
α=1 F

(α)
i )F

(4)|0〉, the character of the phase described remaining unchanged
since the first three operatorial components from |ψgd〉 remain as in equation (9). As can
be seen, the state we are describing persists also above half-filling concentration of particles
within the upper band. Concerning the N dependence, we further mention that the system is
a Fermi liquid for N < 2L.

Taking into account that the flat-band feature is intimately connected only to the presence of
the B̂ term in the Hamiltonian (B̂ collecting all k dependences), we can maintain the described
flat-band features together with the non-Fermi-liquid properties taking into consideration
some local or global contributions to Ĥ that keep the system itinerant (otherwise the system
becomes insulating). For example, we can leave the Dp manifold taking into account
arbitrary and independent deviations δEf and δU from the Ef and U values that satisfies
equation (11). Denoting by δX = δEf + δU , considering U ′ = U + δU > 0, the new
Hamiltonian becomes Ĥ ′ = Ĥ + δX

∑
i,σ n̂

f
i,σ . Adding and subtracting δXN̂c, a new positive

semidefinite operator emerges (we consider here δX > 0), P̂X = δX
∑
i,σ (1 − c+

i,σ ci,σ ),

and we have Ĥ ′ = (P̂+ + P̂X) + E′
g, where, also taking doping into account, E′

g/L =
η[1 − 2|m|2 + (nr/L)(1 + δX/η)] − U ′. The new ground-state wavefunction is obtained
as Pc|ψ ′

gd〉, where in |ψ ′
gd〉 the F (4) term introduces only f electrons, and P̂c = ∏

i,σ n̂
c
i,σ

maximize the number of c electrons6. Under these conditions, at nr = 0, the obtained ground-
state wavefunction is a Mott insulator since it sets rigorously three electrons on every site of the
lattice (a similar result is obtained at δX = nr = 0 and real hybridization coupling constants).
As a consequence, the described non-Fermi-liquid state emerges in parameter space in the close
vicinity of an insulating phase. In the presence of doping, at δX > 0 the on-site expectation
value 〈Ĥloc〉 = (η − |m|2 + δX)(L + nr) − U ′L > E′

g, the system is itinerant, and since the
flat-band feature is present, it is again non-Fermi liquid.

To further emphasize the itinerant character of the ground state described here we are

5 This is because 〈Ĥloc〉 + 〈Ĥmov〉 = EUg , and 〈Ĥloc〉 > EUg .
6 |ψ ′

gd〉 is the ground state if after the normalization to unity the thermodynamic limit is taken. However, there are
special cases (for example tc > 0, V0 = 0, L odd) for which it represents the ground state even at finite L.
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presenting a localized ground state obtained at three-quarters filling in another region of the
phase diagram, but the same model, corresponding also to a completely flat upper band [21]

|ψ1〉 =
∏
i

[(ĉ†
i,↑ +mf̂ †

i,↑)(ĉ
†
i,↓ +mf̂ †

i,↓)(αi ĉ
†
i,↑ + βi ĉ

†
i,↓ + γif̂

†
i,↑ + δi f̂

†
i,↓)]|0〉 (18)

where αi, βi, γi, δi are constant numbers. This ground state contains the same number of
particles (i.e. three) on every lattice site and gives [21]

〈T̂c〉 = 〈T̂f〉 = 〈V̂1〉 = 0 (19)

〈Ĥloc〉 = EUg,l (20)

where, for the localized case, the ground-state energy per site [21] isEUg,l/L = −(VoV1/tf)(1−
2t2f /V

2
1 )−U . A comparison of the two ground states from equations (9) and (18) shows that

|ψ1〉 sets rigorously three electrons on each site of the lattice, while |ψg〉, besides sites with
three electrons, contains sites with four and two electrons as well. As a consequence, any
hopping-like Hamiltonian term (such as T̂c, T̂f or the ‘band-change hopping’ V̂1) applied to
|ψ1〉 gives a state orthogonal to |ψ1〉, from where equation (19) arises. This is no longer true
in the case of |ψg〉, from where the main difference between the two ground states emerges.
Starting from the point of view of the Kubo formula, we mention that we have (see e.g. [22])
1/m∗ ∼ −〈Ĥkin〉 and the real part of the conductivity inω → 0 limit σ ′(ω) ∼ 1/m∗, wherem∗

is the effective mass, and Ĥkin is the global kinetic energy (in our case built up from Tc, Tf and
V1, which give contributions to the current operator). As a consequence, we have a localized
state only if m∗ = ∞, i.e. in the |ψ1〉 case where equation (19) or (20) holds.

In conclusion, in this Letter a new non-Fermi-liquid normal phase has been presented,
which is not intimately connected to one spatial dimension.
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